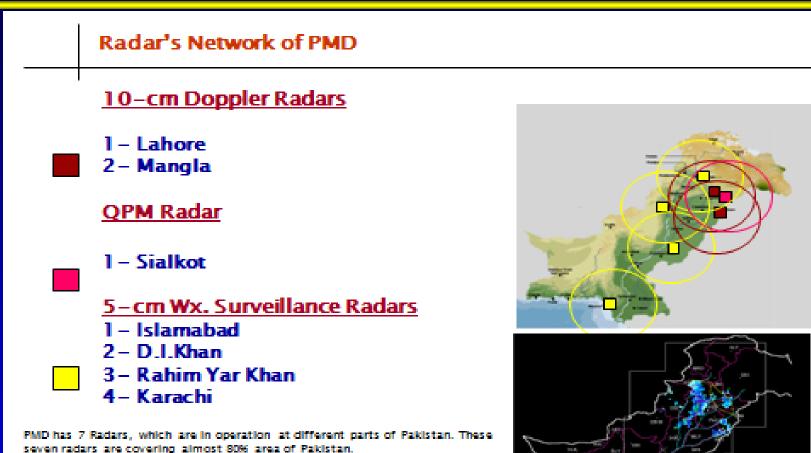
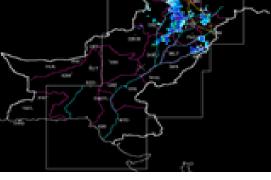


An overview of Weather Observation practices over Pakistan


By Wali Ullah Khan Pakistan Meteorological Department

JMA/WMO TRAINING WORKSHOP ON CALIBRATION AND MAINTENANCE OF METEOROLOGICAL INSTRUMENTS IN RA II (ASIA) Regional Instruments Centre (RIC)- Tsukuba, Japan (19-22 February 2013)



SERVICES DELIVERED BY PMD

- 1. AVIATION METEOROLOGICAL SERVICES
- 2. HYDRO-METEOROLOGICAL SERVICES AND FLOOD FORECASTING
- 3. AGRO-METEOROLOGICAL SERVICES
- 4. CLIMATOLOGICAL SERVICES
- 5. GEOPHYSICAL AND SEISMOLOGICAL SERVICES
- 6. WEATHER FORECASTING SERVICES TO PUBLIC THROUGH ELECTRONIC & PRINT NEWS MEDIA
- 7. ASTRONOMICAL INFORMATION SERVICES
- 8. MET-FORECAST FOR MOUNTAINEERING EXPEDITION / MARINE METEOROLOGICAL SERVICES
- 9. GLACIER MONITORING AND MOUNTAIN HAZARDS
- 10. FOG SERVICE

New 6 Radars are under progress which are expected to complete before Dec. 2012.

Satellite Ground Stations of PMD

HRPT

1 – Islamabad 2 – Quetta

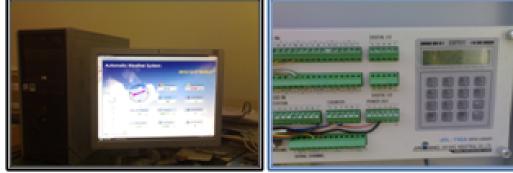
FY-2 E/D 1 - Islamabad

PMD has 8 Satellite grounds; 2 HRPT systems installed at Islamabad and Quetta. 1 Is Chinese ground satellite station, working in Islamabad.

SODAR – the vertical wind profiler

SODAR:

Sonic Detection and Ranging used for vertical wind profile & atmospheric changes over a particular site leading to tropical cyclone tracking. Also helpful in monitoring the instant upper winds up to 5000 ft with RASS- Radio Acoustic Sounding System- measures the virtual temperature.



AWS - automatic weather station

AWS:

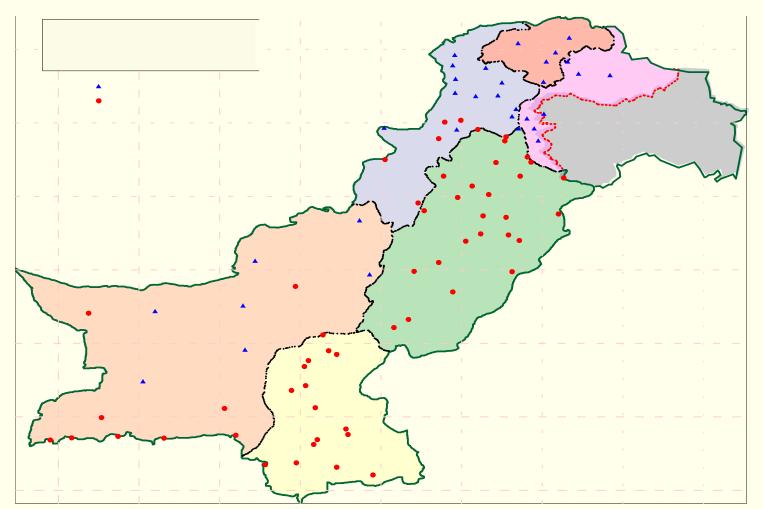
Records hourly/half hourly weather elements and transmits the data via GSM modem to TCWC Karachi. This coastal data is extremely vital to monitor the cyclone location and movement.

Generally there are two classes of the Meteorological surface observatories in PMD:

Class-I Observatories: These observatories are provided with:

- Barometer (Mercury Aneroid)/self recording instrument
- Maximum Thermometer
- Minimum Thermometer
- Dry Bulb
- Wet Bulb
- Anemometer
- Wind Vane
- Rain Gauge + Measuring glass
- Observing watch
- Stevenson Screen

Class-I observatories take synoptic observations at least eight times daily at the standard UTC hours i.e. 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100.


Class-II Observatories:

- These observatories are provided with the eye reading equipment only and record daily at least three (3) synoptic observations at standard hours 0000, 0300 & 1200 UTC.
- Barometer (Mercury Aneroid)
- Maximum Thermometer
- Minimum Thermometer
- Dry Bulb
- Wet Bulb
- Anemometer
- Wind Vane
- Rain Gauge + Measuring glass
- Observing watch
- Stevenson Screen

Number of Surface observing stations over Pakistan

 Surface observation stations 	88
 Pilot Balloon Observation 	35
 Upper air Rawin Sonde Station 	02
 Weather Surveillances Radars 	07
 Vertical wind profiler (SODAR) 	01
 Automatic Weather Station 	37

Distribution map of station

1. Surface observation station Surface Observations-Case Examples

• Surface Observatories are mostly manned and at remote areas automated. Problems generally identified are stated below with their possible solutions.

Instrument	Troubles/Problems	Recovery
Manned Observatories	 Systematic error which appears either due to lack of experience of observer or instrumental error. Procedural Errors in reporting pressure to sea level or misuse of conversion table 	 Training of the concerned professionals and repair of instrument resolve the issues Reporting observations in supervision of well trained professional for some time
Automated	 Malfunctioning of sensors due to weathering or pollution Lack of power due to dust deposit on solar panel 	Regular maintenance in winter and summer seasons ensures the normal operation of equipment

1. Surface observation station Surface Observations-Issues and Efforts

Issues

• Most of the observatories are located in far-flung areas and there is no incentive for officials to work in such hostile climates.

• Meteorological service has not been an attractive job despite the challenges of Global Warming and Climate Change.

• Developing countries do not afford replacement of old instruments with new versions; often their spares are not available with manufacturers.

Efforts to maintain Operation

Although all the issues stated above encounter the morale and zeal of meteorological professionals yet the operation is maintained with marginal human resource and maintenance of equipment with indigenous skills.

2. Instruments in operational use

Manufacturer & model, current status & interval of maintenance & calibration

S N	Element	Instrument	Make & Model	Current Status	Maintenance Interval & Calibration *
1	Pressure	Mercury-filled Barometer	F. Darton & Co. London 1955	Functional	Biannually (M) & Annually (C)
2	Temperature	Mercury-filled Thermometer	G. H. Zeal/ RW Munro London 1970	Functional	Biannually (M) & Annually (C)
3	Humidity	Hair hygrograph	Casella/ Fairmount London, 1980	Functional	Biannually (M) & Annually (C)
4	Wind	Electrical Anemometer	PMD, 2010	Functional	Biannually (M) & Annually (C)
5	Precipitation	Rain gauge (Manual +Automated)	PMD, 2010	Functional	Biannually (M) & Annually (C)
6	Sunshine duration	Sunshine recorder	German, 2005	Functional	Biannually (M) & Annually (C)

*M- maintenance, C- calibration

2. Instruments in Operational Use-Case Examples

• Surface Observatories are mainly equipped with manually operated instruments such as thermometers, anemometers, raingauges etc.

Instrument	Troubles/Problems	Recovery
Anemometer	 Dust mixed with Lubricant james/retards the operation Plastic belt expands/ contracts due to extreme temperatures slows meter reading 	 Cleaning of mechanical assembly in kerosene oil/petrol Change of belt before the onset of summer and winter where necessary in harsh climatic zones
Thermometer	Creation of air bubblebreak in column	Both the problems are inter- related and they are recovered by boiling and freezing treatment
Raingauges	 Ordinary raingauges collector develop some leakage outlet at aged welded points Self-recording raingauges get clock slow down problems 	 Collectors are replaced with a continuous steel sheet container and no joint is left Clock repairs recover the normal operation

2. Instruments in operational use

Instruments in Operational Use-Case Examples

Surface Meteorological Network of Pakistan includes Automatic Weather Stations (AWS) at low elevation from SIAP Italy and high elevation plains from SIBA Germany (Glacier Area of Himalayas-Karakoram and Hindukush)

Instrument	Troubles/Problems	Recovery
Low Elevation AWS	 Dust and birds excreta on solar panel reduces the power support (common problem) Dust choks sensors in frequent dust storm zones 	 Regular cleaning of solar panel to ensure optimum power supply Sensors are cleaned frequently in dust storm season with a dust cleaning sheet
High Elevation AWS	 Snow Pillows unevenness records less or more snow Failure of Pluvio's heating system stops recording snow 	 Cemented surface or wood sheet is used to maintain level Battery and solar panel to provided to work alternatively

3. Standards and equipments for calibration

National meteorological standards, Working standards, Traveling standards:

S N	Instrument	Manufacturer	Current status	Interval of calibration
1	National Standard Barometer	Negretti & Zambra M/2728	Functional	Two years
2	Working Standard Barometer	F Dalton & Co., England PMS-8919	Functional	Two years
3	Travelling Standard Barometer	F Dalton & Co., England P-314	Functional	Two years
4	Working Standard Barometer with calibration chamber	Negretti & Zambra	Functional	Two years
5	Working Standard Wind Blower,	Vickers Metropolitan, England, 13955	Functional	Two years
6	Three cup anemometer	MWS, PMD, Pakistan	Functional	Two years
7	Humidity Chamber	F Dalton & Co., England 59/101	Functional	Two years
8	Working Standard Thermometer	G H Zeal, England 7833	Functional	Two years
9	Travelling Standard Thermometer	Casella, London KSF-58239	Functional	Two years

2. Instruments in operational use Instruments in Operational Use-Issues and Efforts in Maintenance and Calibration

Issues

• Calibration with Regional Standard is a top issue which require transportation of instruments bearing heavy costs of boarding and lodging.

• Very old models of equipment do not find a compatible standard instrument for calibration

• Spares of various models are not available with companies as they have moved to improved versions.

Efforts in Maintenance and Calibration

• CMA helped PMD for calibration of met instruments bearing all the costs of logistic, boarding and lodging.

• Local engineering staff struggles to modify the faulty components to fit in for sustainable operation up to some extent.

